Normal view MARC view ISBD view

Python for data analysis / Wes McKinney.

By: McKinney, Wes.
Material type: TextTextPublisher: NEW DELHI O'Reilly, c2013Description: xiii, 447 p. : ill. ; 24 cm.ISBN: 9789351100065; 1449319793 (pbk.).Subject(s): Python (Computer program language) | Programming languages (Electronic computers) | Data miningDDC classification: 005.13/3
Contents:
Preliminaries -- Introductory examples -- IPython : an interactive computing and development environment -- NumPy basics : arrays and vectorized computation -- Getting started with pandas -- Data loading, storage, and file formats -- Data wrangling : clean, transform, merge, reshape -- Plotting and visualization -- Data aggregation and group operations -- Time series -- Financial and economic data applications -- Advancded NumPy.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Notes Date due Barcode
Books Books Symbiosis Centre for Information Technology
ISSUABLE 
Non-fiction 005.13/3 (Browse shelf) Available 3603 DT 11-9-2017 SCIT-B-10231
Books Books Symbiosis Centre for Information Technology
ISSUABLE 
Non-fiction 005.13/3 (Browse shelf) Checked out 3603 DT 11-9-2017 01/07/2019 SCIT-B-10232
Books Books Symbiosis Centre for Information Technology
ISSUABLE 
Non-fiction 005.13/3 (Browse shelf) Available 3603 DT 11-9-2017 SCIT-B-10233
Books Books Symbiosis Centre for Information Technology
ISSUABLE 
Non-fiction 005.13/3 (Browse shelf) Available 3603 DT 11-9-2017 SCIT-B-10234
Books Books Symbiosis Centre for Information Technology
ISSUABLE 
Non-fiction 005.13/3 (Browse shelf) Available 3603 DT 11-9-2017 SCIT-B-10235

Includes index.

Preliminaries -- Introductory examples -- IPython : an interactive computing and development environment -- NumPy basics : arrays and vectorized computation -- Getting started with pandas -- Data loading, storage, and file formats -- Data wrangling : clean, transform, merge, reshape -- Plotting and visualization -- Data aggregation and group operations -- Time series -- Financial and economic data applications -- Advancded NumPy.

There are no comments for this item.

Log in to your account to post a comment.


//