| 000 | 02352nam a22001937a 4500 | ||
|---|---|---|---|
| 008 | 170822s9999 xx 000 0 und d | ||
| 020 | _a9788126559138 | ||
| 082 |
_a005.74 _bLAR |
||
| 100 | _aLarose, Daniel T. | ||
| 245 |
_aData mining and predictive analytics _cDaniel T. Larose, Chantal D. Larose |
||
| 250 | _a2nd ed. | ||
| 260 |
_aNew Delhi : _bWiley, _c2018 |
||
| 300 | _a xxix, 794 p. : ill. ; 25 cm. | ||
| 365 | _b799.00 | ||
| 520 | _aPart I. Data Preparation Chapter 1. An Introduction to Data Mining and Predictive Analytics Chapter 2. Data Preprocessing Chapter 3. Exploratory Data Analysis Chapter 4. Dimension-Reduction Methods Part II. Statistical Analysis Chapter 5. Univariate Statistical Analysis Chapter 6. Multivariate Statistics Chapter 7. Preparing to Model the data Chapter 8. Simple Linear Regression Chapter 9. Multiple Regression and Model Building Part III. Classification Chapter 10. k-Nearest Neighbor Algorithm Chapter 11. Decision trees Chapter 12. Neural Networks Chapter 13. Logistic Regression Chapter 14. Naïve Bayes and Bayesian Networks Chapter 15. Model Evaluation Techniques Chapter 16. Cost-Benefit Analysis Using Data-Driven Costs Chapter 17. Cost-Benefit Analysis For Trinary and k-Nary Classification Models Chapter 18. Graphical Evaluation of Classification Models Part IV. Clustering Chapter 19. Hierarchical and k-Means Clustering Chapter 20. Kohonen Networks Chapter 21. Birch Clustering Chapter 22. Measuring Cluster Goodness Part V. Association Rules Chapter 23. Association Rules Part VI. Enhancing Model Performance Chapter 24. Segmentation Models Chapter 25. Ensemble Methods: Bagging and Boosting Chapter 26. Model Voting and Propensity Averaging Part VII. Further Topics Chapter 27. Genetic Algorithms Chapter 28. Imputation of Missing Data Part VIII. Case Study: Predicting Response to Direct-Mail Marketing Chapter 29. Case Study, Part 1: Business Understanding, Data Preparation, and Eda Chapter 30. Case Study, Part 2: Clustering and Principal Components Analysis Chapter 31. Case Study, Part 3: Modeling And Evaluation For Performance And Interpretability Chapter 32. Case Study, Part 4: Modeling And Evaluation For High Performance Only | ||
| 650 | _aData Science / Computer. Data Mining | ||
| 700 | _aLarose, Chantal D. | ||
| 942 |
_2ddc _cB |
||
| 999 |
_c590236 _d590236 |
||